How Liquid-cooled PCs Work
Browse the article How Liquid-cooled PCs Work
Introduction to How Liquid-cooled PCs Work
Whether you're using a desktop or laptop computer, there's a good chance that if you stop what you're doing and listen carefully, you'll hear the whirring of a small fan. If your computer has a high-end video card and lots of processing power, you might even hear more than one. In most computers, fans do a pretty good job of keeping electronic components cool. But for people who want to use high-end hardware or coax their PCs into running faster, a fan might not have enough power for the job. If a computer generates too much heat, liquid cooling, also known as water cooling, can be a better solution. It might seem a little counterintuitive to put liquids near delicate electronic equipment, but cooling with water is far more efficient than cooling with air.
Image courtesy Darrin Gatewood A liquid-cooled PC in a clear case. See more liquid-cooled PC pictures. |
A liquid-cooling system for a PC works a lot like the cooling system of a car. Both take advantage of a basic principle of thermodynamics - that heat moves from warmer objects to cooler objects. As the cooler object gets warmer, the warmer object gets cooler. You can experience this principle firsthand by putting your hand flat on a cool spot on your desk for several seconds. When you lift your hand, your palm will be a little cooler, and the spot where your hand was will be a little warmer.
Liquid cooling is a very common process. A car's cooling system circulates water, usually mixed with antifreeze, through the engine. Hot surfaces in the engine warm the water, cooling themselves off in the process.
|
A car engine generates heat as a byproduct of burning fuel. Computer components, on the other hand, generate heat as a byproduct of moving electrons around. A computer's microchips are full of electrical transistors, which are basically electrical switches that are either on or off. As transistors change their states between on and off, electricity moves around in the microchip. The more transistors a chip contains and the faster they change states, the hotter the chip gets. Like a car engine, if the chip gets too hot, it will fail.
Most computers dispel this heat with heat sinks and fans. Heat sinks are basically pieces of metal that provide lots of surface area for the air to touch. The chip warms the heat sink, the heat sink warms the air, and the fan moves the warm air out of the PC case.
Image courtesy HowStuffWorks Shopper A heat sink uses lots of surface area to transfer heat from electronic components to the air. |
|
There are two reasons why a computer might need the increased thermal conductivity and heat capacity of water:
- Its electronic components produce more heat than the air around them can absorb
- The fans required to move enough air to cool all the components make too much noise or use too much electricity
- The components inside your computer need more cooling than air alone can provide
- You want your system to be quieter
|
Cooling with Liquid
A liquid-cooling system for a PC is a lot like a cooling system for a car. Coolant flows through channels in a car's engine block, and the rest of the cooling system incorporates: - A pump that moves coolant through the system
- A radiator that dispels heat into the air
- A fan that moves air over the radiator
- A coolant reservoir that holds extra fluid and allows easy addition of coolant
- Hoses that connect the different parts of the system
Image courtesy Darrin Gatewood These water blocks can cool a GPU, a CPU and a northbridge. |
Many central processing unit (CPU) water blocks are universal, but some graphics processing unit (GPU) water blocks only work with specific chips. You can also find water blocks designed to cool other high-temperature chipsets, like the northbridge, which connects your CPU to your memory. Usually, small bolts and washers attach the water block to the necessary printed circuit board (PCB), such as the motherboard or video card.
The rest of a liquid-cooling system's components are much like those found in a car's cooling system. Most liquid-cooled PCs have:
- A pump
- A radiator
- A fan
- A coolant reservoir
- Tubing
|
The pump is one of the most important parts of the system. Its flow rate determines how quickly the coolant moves through the tubes and blocks. If the water moves too quickly, it doesn't have time to absorb heat before moving on. If it moves too slowly, too much heat can build up around sensitive components. The complexity of the system affects the overall flow rate - the more resistance the fluid encounters within the blocks and radiator, the slower the overall flow rate.
The pump also has to be strong enough to move the liquid from the lowest point in the system to the highest. This is known as head pressure or vertical pressure, and it's especially important when liquid cooling tall server towers.
Image courtesy Amazon.com A pump for a liquid-cooled PC. |
Not every liquid-cooled system has a fan, but most use one to help the radiator dispel heat faster. Similarly, not every system has a separate reservoir. Those that don't generally have a fill/bleed line for adding coolant and removing extra air from the system. Usually, the fill/bleed line leads to a filling port at the top of the computer's case.
Image courtesy Darrin Gatewood Many cooling reservoirs fit into a computer's drive bay. |
In a simple system, a tube connects the pump to the inlet of a water block. Separate tubes run from the water block's outlet to the radiator and the radiator to the reservoir, which often sits in one of the computer's CD-ROM bays. The final tube connects the reservoir back to the pump. For systems with multiple water blocks, tubes connect one block's outlet to the next block's inlet, connecting the blocks in series like a daisy chain.
|
The final component of a liquid-cooling system is the liquid itself. Many people use distilled water, since tap water contains contaminants that can cloud the system or clog the channels in the water blocks and radiator. Specialized additives can add color to the fluid, making it more visually appealing when used in a clear case. They can also lower the freezing point or surface tension of the water, making it a more effective coolant. Finally, some additives have antimicrobial or anti-corrosion ingredients, which can increase the life of the system.
Image courtesy Darrin Gatewood In an operational system, tubes carry coolant to and from water blocks. |
Once you're sure that everything is watertight, boot up the computer. You can check the temperature of your components in your computer's BIOS menu or by using a third-party application that monitors temperature. If necessary, you can also apply smaller heat sinks to RAM chips and other higher-temperature components in your system.
September 18, 2016 at 7:03 AM
Did you know you can shorten your long links with OUO and receive money from every visitor to your shortened links.